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Abstract: Genome sequencing of 1,537 individuals from 139 ethnic groups reveals the genetic 61 

characteristics of understudied populations in North Asia and South America. Our analysis 62 

demonstrates that West Siberian ancestry, represented by the Kets and Nenets, contributed to the 63 

genetic ancestry of most Siberian populations. West Beringians, including the Koryaks, Inuit, and 64 

Luoravetlans, exhibit genetic adaptation to Arctic climate, including medically relevant variants. 65 

In South America, early migrants split into four groups – Amazonians, Andeans, Chaco 66 

Amerindians, and Patagonians – ~13,900 years ago. Their longest migration led to population 67 

decline, while settlement in South America’s diverse environments caused instant spatial isolation, 68 

reducing genetic and immunogenic diversity. These findings highlight how population history and 69 

environmental pressures shaped the genetic architecture of human populations across North Asia 70 

and South America.  71 
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The late Pleistocene saw the expansion of humans into the frigid lands of Eurasia. The earliest 72 
known presence of modern humans in northern Eurasia at latitudes greater than 50°N was around 73 
45,000 years ago (ya) in West Siberia (1), and by 31,600 ya, humans had migrated far east towards 74 

Beringia, north of the Arctic Circle at 71° N (2). The earliest human remains identified in this 75 
region are two Yana RHS individuals that, despite their extreme Northeast Siberian geographical 76 
location, show substantial genetic relatedness to early West Eurasian hunter-gatherers (3). The 77 
Upper Palaeolithic people who initially populated Northeast Siberia were then replaced by arrivals 78 
from East Asia. The Kolyma1 remains, excavated near the Chukotka region and dated 9,800 ya, 79 

demonstrates greater affinity to East Asians and present-day west Beringian populations, such as 80 

Koryaks and Luoravetlans (also known as Chukchi), as well as to Native Americans (3). The 81 
linguistic and cultural diversity of present-day Indigenous Siberian populations (4) is mirrored by 82 
the complex patterns of admixture, as shown by genome-wide genotype data analysis (5-7). This 83 
genetic structure in Siberians, comprised of several ancestral components, is estimated to have 84 

emerged within the past 10,000 to ~3,400 years (5, 8). The Western Eurasian ancestry component 85 

presented in majority of Indigenous Siberian populations is not the result of postcolonial Russian 86 

admixture but one of the ancient components (5, 8) dating back to 12,500 to 25,000 ya in different 87 
Siberian populations (8). Among the present-day populations of Northeast Eurasia, the Koryaks 88 
from the Kamchatka Peninsula (3, 9) and Inuit from Chukotka (10, 11) show the closest genetic 89 

relatedness to Native North Americans. 90 

The migration of humans to the Americas occurred when the Bering Land Bridge was still open 91 
(12), with the earliest human remains in North America found in the Clovis burial site in western 92 
Montana dating back to around 12,700 ya (13). However, recent evidence suggests a human 93 
presence in North America at least 23,000 ya (14). By the time the Ice-Free Corridor opened up 94 
and became suitable for travel around 13,300 ya (15), humans were already widely dispersed in 95 

North America (16), likely due to Pacific coastal migration routes (17). The divergence between 96 

northern and southern Native American populations is estimated to have occurred between 17,500 97 
and 14,600 years ago, south of the North American ice sheets, according to modern and ancient 98 
genomic analyses (9, 18). The rapid dispersal of humans in South America is suggested by 99 
archaeological records, which date the earliest human presence in North Patagonia, the 100 

southernmost tip of the Americas, to 14,500 ya (19). However, the number of basal divergences, 101 
founding populations, admixture, and the degrees of isolation among Native South American 102 

populations remain a subject of debate (20-29), with most of the current understanding coming 103 
from analyses of genome-wide genotyping or ancient DNA data. Additionally, fine-scale 104 
population genetic studies based on high-coverage whole genome sequencing datasets for 105 

contemporary populations of North Eurasia and South America have not been performed to date. 106 

In this study, we aim to improve our understanding of the prehistoric population dynamics and 107 

shaping of the contemporary populations of North Eurasia and the Americas, as well as the history 108 

of adaptation to the diverse environments encountered by humans during their migration and 109 

settlements. We use large-scale whole-genome sequencing datasets representing populations from 110 

Northeast Europe, Siberia, and the Russian Far East (west Beringia), as well as Native Americans, 111 

to identify population structure for reconstructing demographic history. We also aim to clarify the 112 

role of past environments and lifestyles in the diversification of human populations in North 113 

Eurasia and South America. Finally, we aim to demonstrate the importance of incorporating 114 

population history and ancestry information into present biomedical research. 115 



5 
 

Population structure and admixture 116 

The GenomeAsia 100K consortium has created a high-resolution whole-genome dataset of 1,537 117 

individual genomes representing 139 ethnic groups from 27 countries across North Eurasia and 118 

Native America [see supplementary text S1, tables S1.1-S1.4 (30)]. The dataset, GA100K:NENA, 119 

was generated using the Illumina sequencing platform and processed with a uniform pipeline for 120 

mapping and variant calling [see supplementary text S2 (30)]. In total, the dataset includes 121 

72,207,507 biallelic single nucleotide polymorphisms (SNPs) and 40,821 small insertions and 122 

deletions (INDELs) compared to the GRCh37 reference genome. For this study, the dataset was 123 

filtered to a subset of 50,557,893 high-quality autosomal SNPs in 1,477 unrelated individuals [see 124 

supplementary text S3, S4 (30)]. To further explore the genetic history of North America, the 125 

GA100K:NENA dataset was combined with an open-source genotyping data from modern (31, 126 

32) and ancient Native North Americans (11, 25, 28, 33-38). These data provide a valuable 127 

resource for understanding the population structure and ancient history of North Eurasia and South 128 

America, as well as the adaptation of these populations to diverse environments [see 129 

supplementary text S5 (30)]. 130 

The genetic diversity of West and North Eurasians is influenced by six ancestral components that 131 

reflect the geographical distribution of these populations, according to Admixture (39) and local 132 

ancestry analysis (40, 41) (Fig. 1), [see supplementary text S5.1, S5.2 (30)]. Indigenous groups in 133 

Northeast Europe, such as the Finno-Ugric speakers, share common ancestry with Northeast 134 

Europeans. However, Finno-Ugric speakers living further to the east, such as the Komi, Udmurts, 135 

Mansi, and Khants, share an ancestry component most enriched in West Siberian populations, such 136 

as Kets and Nenets living in the Yenisei River basin. West Siberian ancestry is prevalent among 137 

contemporary Siberian populations, particularly the Kets and Nenets. Most West Siberians are 138 

traditionally nomadic or semi-nomadic [table S1.3 (30)] and show admixture patterns with 139 

Yeniseians, Northeast Europeans, Caucasians, and East Asians, reflecting frequent multi-140 

directional migrations across North Eurasia in the past. East Siberians are related to West Siberians 141 

and East Asians, while European admixture is generally minor. The west Beringian populations of 142 

Chukotka and the Kamchatka Peninsula are less admixed, likely due to their isolation in remote 143 

and frigid areas. These populations represent a distinct ancestry, which is substantially shared with 144 

contemporary Indigenous Canadian Chipewyan and is present in several ancient Native North 145 

Americans such as Alaskan USR1 and Athabaskan, Anzick, Lovelock and Spirit Cave remains 146 

[fig. S5.11B (30)]. In the principal component analysis (42) (PCA), Beringians exhibit a linear 147 

cline towards the Indigenous Canadian Chipewyan and the clusters of Native Meso- and South 148 

Americans (Fig. 2A), [see supplementary text S5.3, S5.5 (30)]. As described above, the variants 149 

generated from our high coverage genomes were intersected with previously published genotyping 150 

data (3, 10, 11), and confirms that within North Eurasian populations, Koryaks, Luoravetlans (aka 151 

Chukchi), and Inuit are the closest to Native Americans.  152 

The population structure of Native South Americans is characterized by four ancestral lineages 153 

(Fig. 1) that reflect geographical and environmental boundaries, such as the Andes Mountains, the 154 

hot and semiarid lowland Dry Chaco region, the Amazon basin with its moist tropical rainforest 155 

jungle, and the cold polar climate of the Patagonia region. The Andean and Chaco Amerindian 156 

ancestries are prevalent among contemporary Native South Americans. Andean ancestry is typical 157 
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for highlanders in western South America, but some of these populations, such as Aymara, 158 

Atacama, and the population in the Puna region, also show a significant relatedness to Chaco 159 

Amerindians and a minor admixture with Amazonians. Colombians and Guahibo mainly share 160 

ancestry with Chaco Amerindians and show recent admixture with Europeans and Africans (Fig. 161 

1A), [supplementary text S5.1, S5.6 (30)]. The four Native South American ancestral lineages are 162 

identified in separate clusters in the PCA, diverging in a star-like pattern with Mesoamericans 163 

located at the center (Fig. 2C). Similarly, ancient Native North American samples exhibit all four 164 

ancestral components in varying proportions [fig. S5.11B (30)] and cluster with contemporary 165 

Native Mesoamericans in PCA [fig. S5.14 (30)]. This suggests that Native Meso- and North 166 

Americans are genetically closest to the common ancestor of the four Native South American 167 

ancestries. The Andean component is predominant in the ancient samples from Peru, while the 168 

Patagonian ancestral component prevails mostly in the ancient samples from Chile and Argentina 169 

(figs. S5.11B and S5.14), indicating genetic continuity in South America. 170 

Demographic history and its effect on genetic diversity 171 

Analysis of the dynamics of population sizes and population splits (Fig. 2D, 2E), [see 172 

supplementary text S7 (30)] showed that nomadic hunter-gatherer West Siberians, represented by 173 

the Kets in our dataset, were among the largest populations in North Eurasia around 10,000-13,900 174 

ya, as indicated by Relate (43) (Fig. 2D). The MSMC-IM (44) and qpGraph (45) results suggest 175 

that the Kets were shaped by admixture between East Asians (77%) and Northeast Europeans 176 

(23%) (Fig. 2E), likely due to frequent migrations in North Eurasia ~8,000-15,000 ya [fig. S7.5 177 

(30)]. This admixture is also supported by the qpGraph analysis including ancient genomes, as 178 

described in supplementary text S7.3 (30). However, the population of Kets declined by 73.6% 179 

since 10,000 ya (effective population size Ne from 4,448 to 1,194). Similarly, the Arctic hunter-180 

gatherer Koryaks also saw a population decline by 64.4% since 10,000 ya (Ne from 3,021 to 181 

1,075). In contrast, during the same period, agricultural populations of Northeast Europeans and 182 

East Asians expanded by 176.8% (Ne from 4,641 to 12,844) and 91.9% (Ne from 3,029 to 5,813), 183 

respectively. 184 

Our estimates of population split times suggest that a deep divergence occurred between North 185 

Eurasians and Native Americans between 26,800 and 19,300 ya during the Last Glacial Maximum 186 

(Fig. 2D), confirming previous estimates (3, 9, 14, 18, 31). After the split, gene flow from the 187 

Americas back to Beringia is detected in Koryaks and Inuit, with estimates of 5% and 28% Native 188 

American ancestry, respectively, according to qpGraph (Fig. 2E), [see supplementary text S5.6, 189 

S7.3 (30)]. The population split time estimates also suggest that the divergence of the four Native 190 

South American lineages occurred over a short period, from 13,900 to 10,000 ya (Fig. 2D), [fig 191 

S7.6, fig, S7.8 (30)]. All four lineages show a continuous population decline. However, the Andean 192 

highlanders managed to maintain their population size during the rise of maize horticulture around 193 

5,200-3,700 ya (46). It has declined by 45.1% since then (Ne from 1,771 to 972), while Chaco 194 

Amerindians has declined by 46.89%, Ne from 1,448 to 769 since 10,000 ya (Fig. 2D). 195 

Amazonians and especially Patagonians have seen a dramatic decrease in population size over the 196 
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last 10,000 years, with declines of 66.59% (Ne from 1,368 to 457) and 79.68% (Ne from 1,171 to 197 

238), respectively. 198 

To assess the impact of population decline on genetic diversity, we estimated genome-wide runs 199 

of homozygosity (ROHs) segments (47) [see supplementary text S8 (30)]. In Native South 200 

Americans, the average number and length of ROHs segments estimated across all populations 201 

were 10.5 times and 1.3 times higher than those in Africans (Yoruba), and 3.75 times and 1.2 times 202 

higher than those in Northeast Europeans, respectively. The highest abundance of extended ROHs 203 

was observed in Amazonians, Patagonian Kawésqar, and Chaco Amerindians (Fig. 3A), and was 204 

similar to that seen in isolated island populations like the Andamanese and Baining (Fig. 3B). This 205 

high homozygosity is likely the result of the founder effect due to long-distance migration and/or 206 

population isolation. The strong correlation between the average total number of ROHs and the 207 

average nucleotide diversity (RPearson = –0.78) supports the idea that the extended homozygosity 208 

is a result of population history (Fig. 3A). 209 

To evaluate the impact of population history on immune genes, we analyzed the diversity of human 210 

leukocyte antigen (HLA) genes in different population groups [see supplementary text S9 (30)]. 211 

Maintaining high diversity of HLA genes is important for host defense mechanisms, enabling the 212 

immune system to present a wide range of antigens to effector cells (48). We calculated the average 213 

total number of unique HLA alleles across eight genes in each population group and its correlation 214 

with the average total number of ROHs. Although the number of unique HLA alleles is expected 215 

to be maintained under natural selection, we observed variation among different populations (Fig. 216 

3B, 3C). Populations with higher homozygosity had a smaller average total number of unique HLA 217 

alleles (RPearson = –0.7, Fig. 3B), particularly the isolated populations such as the Baining, 218 

Amazonians, and Patagonian Kawésqar. This suggests that genetic drift, driven by bottlenecks and 219 

founder effects, may have been sufficiently strong to suppress diversifying selection on HLA genes 220 

and reduce the HLA diversity in these populations. 221 

Adaptation to the cold environment in Indigenous Beringian populations 222 

We performed a genome-wide scan for selection sweep loci (using XP-EHH and iHS analyses) in 223 

Chukotka and the Kamchatka Peninsula populations that have adapted to living in a frigid Arctic 224 

climate. We identified selection signals in genes involved in lipid metabolism and thermogenesis, 225 

sensory perception such as olfaction and vision, and the regulation of reproductive functions and 226 

the immune system (Fig. 4A), [supplementary text S11 (30)]. 227 

Our analysis identified a strong signal for positive selection in the carnitine palmitoyltransferase 1 228 

A (CPT1A) gene, which plays a crucial role in the import of long-chain fatty acids into 229 

mitochondria for fatty acid oxidation and energy production. We used the iSAFE (49) method and 230 

identified a missense mutation rs80356779 (Pro479Leu) favored by positive selection see 231 

supplementary text S11.1 (30)]. While this variant has been associated with carnitine 232 

palmitoyltransferase I deficiency (50) and spinal muscular atrophy (51), it is common in Arctic 233 

populations (Inuit of North America (52-55)) and does not appear to have any clinical 234 

manifestations in carriers (54). In our study, the frequency of the Leu479 allele in Beringian 235 
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populations ranged from 75% to 90% (Fig. 4B), and it may help carriers to maintain body heat by 236 

keeping certain fats unmetabolized. 237 

Our study also identified signals of positive selection on the lysophosphatidic acid receptor 1 gene 238 

(LPAR1). The iSAFE analysis highlighted a variant rs1043128 in the 3' UTR of LPAR1, a cis 239 

eQTL for the gene (56). The frequency of the G allele is very high in Inuit and Luoravetlans (90%), 240 

common in Koryaks (41%), but much lower in Siberians and East Asians (Fig. 4C). LPAR1 is 241 

involved in the regulation of smooth muscle cell chemotaxis, bioactive lipid receptor activity, and 242 

cellular responses to oxygen levels, as indicated by gene ontology analysis [see supplementary text 243 

S11.4 (30)]. These findings suggest that LPAR1 may be involved in thermoregulation processes. 244 

Adaptation to hypoxia in Andean highlanders 245 

We screened for selection signals in Andean highlanders and identified a selection sweep in the 246 

gene hypoxia-inducible transcription factor 2α (HIF-2α, also known as EPAS1). This gene plays a 247 

role in the cellular and systemic responses to hypoxia (57, 58), including the stimulation of new 248 

blood vessel formation and the production of red blood cells. The selection signal in EPAS1 has 249 

also been identified in Tibetan highlanders (59-61) and Colla from Northwest Argentina (62). Our 250 

iSAFE analysis identified a missense mutation rs570553380 (His>Arg) as a top-ranked variant, 251 

which differs from the ones previously described in Tibetans [see supplementary text S11.10 (30)]. 252 

The Arg allele has a frequency of 28-45% among Quechua speakers and 33% among Peruvians 253 

living in highlands but is absent in other Native South Americans (Fig. 4D). 254 

Pathogenic and adverse drug response variants 255 

In the GA100K:NENA datasets, we identified 67,252 variants that are clinically relevant (ClinVar 256 

v.20190305, https://www.ncbi.nlm.nih.gov/clinvar/) and calculated their allele frequencies per 257 

population [table S12.1 (30)]. Among these, 529 variants are classified as pathogenic, including 258 

349 (66%) non-synonymous protein-altering variants in 280 genes and 93 (18%) stop-gain or stop-259 

loss variants in 87 genes [see supplementary text S12.1, table S12.2 (30)]. We counted the number 260 

of pathogenic variants in each individual for both heterozygous and homozygous forms and 261 

presented their distributions across 47 population groups (Fig. 5A). West Eurasians show a slightly 262 

higher load of pathogenic heterozygous variants (on average 6 to 8), likely reflecting bias in variant 263 

discovery in European populations (63). The accumulation of pathogenic variants exceeding two 264 

homozygotes was observed exclusively in the Nivkhs and Andamanese and Baining islanders. 265 

Most individuals (99.1%) carry at least one pathogenic allele. On average, individuals harbor five 266 

heterozygous variants (ranging from 0 to 13) and one homozygous variant (ranging from 0 to 6) 267 

(Fig. 5C).  268 

Additionally, we identified 77 variants associated with adverse drug reactions (DrugBank, 269 

https://go.drugbank.com) and reported their allele frequencies [table S12.3, supplementary text 270 

S12.2 (30)]. Compared to pathogenic variants, the number of variants associated with adverse drug 271 

reactions per individual is higher (Fig. 5B). On average, individuals carried 19 such variants in a 272 

heterozygous form (ranging from 7 to 34) and 7 in a homozygous form (ranging from 1 to 19) 273 

(Fig. 5C). West Eurasians again show slightly higher numbers of heterozygous variants, whereas 274 

African Yoruba and Baining populations exhibit more homozygous variants. 275 
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 276 

Discussion 277 

Using the GA100K:NENA dataset, we have shown that the genetic composition of Siberian 278 

populations is defined by six ancestral lineages (Fig. 1), and that West Siberian ancestry is shared 279 

by all contemporary Siberians, as well as Northeast Europeans and Central Asians. Large-scale 280 

genomic sequencing has allowed for more precise refinement of genetic ancestry that was 281 

previously studied using genotyping data (6, 7). The West Siberian ancestors were numerous 282 

around 10,000 ya and then gradually declined (Fig. 2D). Their population decrease during the early 283 

Holocene may have been due to global warming and the extinction of northern megafauna (e.g., 284 

mammoth (64)), which would have had a significant impact on nomadic hunter-gatherer 285 

populations in the north. In contrast, western and eastern populations that were expanding during 286 

the Neolithic Revolution in the early Holocene (65) likely benefited from the transition to 287 

agricultural and sedentary lifestyles. 288 

Our analysis of whole-genome datasets also allowed us to infer the split time between North 289 

Eurasians and Native Americans, which occurred between 26,800 and 19,300 ya (Fig. 2D, 2E). 290 

This finding is consistent with estimates based on the recently published paleontological discovery 291 

of human footprints in North America (south-central New Mexico) dating back to 23,000 and 292 

21,000 ya (14), as well as with other genetic studies, despite differences in the cohorts that were 293 

investigated (3, 9, 18, 31). A previous study of ancient genomes suggests limited genetic continuity 294 

in Beringia, as the most recent Arctic colonization occurred 6,000 ya (10). Therefore, it is likely 295 

that the first ancestors of the Native Americans in this region were replaced by the most recent 296 

wave of migration. We could not identify a specific Siberian group as direct Native American 297 

ancestors among the contemporary Indigenous populations in our dataset. However, we show that 298 

west Beringian populations, such as Inuit, Luoravetlans, and Koryaks, are genetically the closest 299 

to Native Americans (Fig. 2A). Moreover, we reveal the gene flow from Native Americans back 300 

to Inuit and Koryaks in Chukotka and the Kamchatka Peninsula between 700 to 5,100 ya [fig. 301 

S5.18, and supplementary text S7.3 (30)]. Our analyses also demonstrate the shared ancestry 302 

between the west Beringian populations and contemporary Native North Americans, particularly 303 

the Chipewyan from Canada [fig. S5.11 (30)]. This genetic relatedness is consistent with the PCA 304 

results (Fig. 2A). These findings are in line with previous reports that describe multiple waves of 305 

Northeast Asian gene flow into North Americans (66), including Neo-Inuit lineages (10). 306 

Using our genome sequencing data from diverse Native South Americans, we have discovered that 307 

the simultaneous split of the four Native South American ancestral lineages occurred between 308 

13,900 and 10,000 ya, from a common ancestral population in Mesoamerica (Fig. 2C-2E). This 309 

rapid radial dispersal and the establishment of sedentary settlements across South America are 310 

supported by previous genetic studies (18, 67) and the archaeological findings of early 311 

technologies (such as stone tools) that indicate regional cultural diversification in South America 312 

by at least 13,000 ya (19). This divergence occurred shortly after the split of the ancestral Native 313 

American lineages into northern and southern branches, which happened between 17,500 and 314 
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14,600 ya south of the North American ice sheets (9, 18). By the time the Ice-Free Corridor was 315 

fully opened 14,300-13,300 ya (15) during the abrupt warming, humans were already widely 316 

dispersed in North America (16). 317 

Our study shows that the human migration across South America resulted in population splits with 318 

a loss of genetic diversity due to founder effects. Geographical and environmental boundaries 319 

caused population isolation and further enhanced the genetic homogenization, similar to islander 320 

populations (Fig. 3). The demographic history has significantly influenced the Patagonian 321 

Kawésqar, whose ancestors migrated the farthest distance out of Africa. They have the smallest 322 

effective population size (Fig. 2D) and one of the smallest genetic distances between community 323 

members (Fig. 3C). It has been reported that contemporary Native Patagonians (including the 324 

Kawésqar) show the highest genetic affinity to ancient Patagonian maritime individuals that lived 325 

one thousand years ago, indicating genetic continuity in the region (18, 28, 29). Our study cannot 326 

provide evidence for the reported back migration from the Southern Cone along South America's 327 

Atlantic coast (20), due to a lack of data on east coastal Native South American populations. 328 

Our study also suggests that close genetic relatedness in Indigenous populations, along with 329 

reduced heterozygosity in HLA genes, may impact antigen recognition ability to new unexposed 330 

pathogens. In combination with socioeconomic factors and limited access to medical care, this 331 

could pose a potential health risk (68). High pathogen load regions, such as Southeast Asia, tend 332 

to have a higher diversity of promiscuous HLA-DRB1 alleles, which allows to respond to a wider 333 

range of extracellular pathogens (69). However, emerging evidence that divergent allele advantage 334 

(a mechanism where the HLA genotypes present a broader set of epitopes) (70) and increase in 335 

HLA alleles promiscuity level (69) may counterplay the effect of loss of heterozygosity in HLA 336 

genes. Our work highlights an important implication for future research in population-based 337 

disease cohorts: epitope-binding repertoire studies are essential for identifying the dynamic effects 338 

of limited HLA diversity on disease susceptibility. 339 

Access to the vastness of South American continent was constrained by the relatively small 340 

landmass of the Isthmus of Panama. Consequently, migrating groups could only inhabit the 341 

continent from a singular direction, significantly limiting the genetic diversity of human 342 

individuals. This ultimately led to the emergence of the four ancestries described in our analysis. 343 

While Indigenous groups managed to maintain their populations for over 13 millennia with 344 

minimal interaction with other groups, their endurance faced a critical challenge with the arrival 345 

of the initial colonists in the 1600s. 346 

It is important for public health authorities to develop special measures of protection and 347 

interaction with Indigenous populations to minimize the spread of infections and improve medical 348 

support. We also show that the frequency of variants associated with adverse drug events and 349 

susceptibility to disease can substantially differ even among genetically related populations [see 350 

supplementary text S13 (30)]. Understanding these patterns of diversity is important to future 351 

genome-wide association studies (GWAS) and medical programs. 352 
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It is essential to emphasize the need for conserving the natural environment and respecting 353 

traditional lifestyles and food systems in Indigenous communities. In our study, we identified 354 

several genes under natural selection in Beringian populations that are adapted to the cold polar 355 

climate and a specific diet with low carbohydrate intake, as well as hypoxia resistance genes in 356 

Andean highlanders (Fig. 4). The lack of access to land resources, including environmental 357 

degradation (71, 72) with sustained pollution (73, 74), as well as decreasing biodiversity (75, 76), 358 

along with deprivation from traditional diets and lifestyle (77) and cultural loss, including the loss 359 

of traditional languages (78), have put some Indigenous communities at risk of extinction (79). 360 

Through this research, we aim to emphasize the special needs of Indigenous peoples and the 361 

importance of conserving their environment in the modern world. 362 

Materials and methods summary 363 

We sequenced 799 individual genomes and combined them with 738 genome data from the 364 

previous study (80) [see supplementary text S1 (30)]. Whole-genome sequencing libraries 365 

(Illumina TruSeq DNA Nano) of the genomes were sequenced on Illumina HiseqX platform [see 366 

supplementary Materials and Methods (30)]. The sequence reads were aligned to the human 367 

reference GRCh37 (human_g1k_v37_decoy.fasta). All genomes have been sequenced with an 368 

average coverage greater than 20X [table S1.2 (30)]. The final datasets GA100K:NENA includes 369 

1,537 genomes and 52,663,159 variants: 52,589,813 SNPs (31,334,646 novel SNPs), including 370 

21,217,063 singletons, and 26,398 INDELs (23,396 novel INDELs) [see supplementary text S2 371 

(30)]. Three-field resolution HLA alleles were called using HLA-HD v.1.3.0 (81) based on IPD-372 

IMGT/HLA database v.3.43.0 (48) [see supplementary Materials and Methods and supplementary 373 

text S9 (30)]. To identify cryptic relatedness between individuals, we used the identical-by-state 374 

(IBS) analysis (82) and excluded 60 first-degree relatives ending up with 1,477 unrelated 375 

individuals for further analyses [see supplementary text S3 (30)]. We phased the whole genomes 376 

using Shapeit v.4 (83) [see supplementary text S6 (30)]. We applied a panel of approaches, such 377 

as ADMIXTURE (39), local ancestry analysis (40), principal component analysis (PCA) (42), 378 

uniform manifold approximation and projection (UMAP) (84) methods [see supplementary text 379 

S5 (30)], as well as ALDER v.1.03 (85) and MALDER v.1.0 (86) metrics, and qpGraph (45) for 380 

demographic modelling [see supplementary text S7 (30)]. We also inferred the dynamics of the 381 

population sizes over time and population splits by Relate (43), MSMC (87), and MSMC-IM (44) 382 

[see supplementary text S7 (30)]. We calculated genome-wide runs of homozygosity (ROHs) 383 

segments by the observational genotype-counting algorithm (47) as implemented in PLINK v.1.9 384 

(88) [see supplementary text S8 (30)]. The nucleotide diversity, , was calculated using VCFtools 385 

v.0.1.17 (89). The genome-wide scan for detecting positive selection was performed using cross-386 

population extended haplotype homozygosity analysis (90) (XP-EHH) and Integrated Haplotype 387 

Score (91) (iHS) [see supplementary text S11 (30)]. To identify specific variant (s) favoured by 388 

selection, we applied the integrated Selection of Allele Favoured by Evolution (iSAFE) (49) 389 

method [see supplementary text S11 (30)]. The annotation of the GA100K:NENA genetic variants 390 

to identify adverse drug reactions and clinically relevant pathogenic effects was performed using 391 

the DrugBank v.2020-11-02 (https://go.drugbank.com/, exported 2021-01-03) and ClinVar 392 

v.20190305 (https://www.ncbi.nlm.nih.gov/clinvar/) databases, respectively [see supplementary 393 

text S12, S13 (30)].  394 



12 
 

Figure captions 395 

 396 

Fig. 1. Population structure and admixture. (A) Admixture (39) plot for 1,477 individuals 397 

showing ancestor lineages at optimal K=18 across geographical regions. (B) Local ancestry 398 

analysis (40) shows the distribution of the ancestral components at optimal K=18 across diverse 399 

geographical regions on the map. Representative ethnic groups are shown on the map. The 400 

geographical origin of genotyping reference data (open sources (31, 32)) is also indicated by grey 401 

dots. 402 

Fig. 2. Demographic history and population dynamics. (A-C) Principal components analyses 403 

(42) (PCA) show the projection of individuals on the coordinates of the first two principal 404 

components (PC1 and PC2). The corresponding color indicates population groups. Shapes indicate 405 

the source of the data. Combined genome-wide GA100K:NENA sequencing data and reference 406 

genotyping data were used for global projection depicted in A (Africans were excluded from this 407 

representation). (B) PCA for Northeast European and North Eurasian populations (all admixed 408 

individuals were excluded from this representation). (C) PCA for Native Meso- and South 409 

Americans (all individuals with non-Native American admixture were excluded from this 410 

representation). (D) Relate (43) analysis depicted by the step histogram plot displays the dynamics 411 

of the effective population sizes between 100,000 ya to 1,000 ya. Shadow projections on the X-412 

axis (Years ago) indicate corresponding population split periods. Colors indicate corresponding 413 

populations. (E) Best-fitting tree model of the relationships between contemporary populations, 414 

inferred by qpGraph (45). Tree edges (solid lines) are labeled with branch lengths in 1,000 times 415 

drift units, while admixtures (dotted arrows) are shown with their ancestral nodes (the ancestry 416 

proportion in %). The divergence time, as estimated by Relate, is indicated at the tree nodes. The 417 

admixture time is indicated in dotted circles, inferred by the MSMC-IM (44) and ALDER (85) 418 

analyses. 419 

Fig. 3. Population demographic history and diversity of HLA genes. (A) The average total 420 

number of ROHs vs. the average nucleotide diversity, p, per population. The slope of the linear 421 

regression line (grey dotted line) indicates the relationship between the two variables. Pearson 422 

regression coefficient indicates a highly significant correlation between the two parameters 423 

(RPearson>|0.7|). (B) The average total number of ROHs vs. the average total number of unique HLA 424 

alleles across eight genes (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-425 

DPA1, HLA-DPB1), per population. The slope of the linear regression line (grey dotted line) 426 

indicates the relationship between the two variables. Pearson’s regression coefficient indicates a 427 

highly significant correlation between the two parameters. (C) Relative distribution of the HLA 428 

diversity to nucleotide diversity, p, in various populations across the continents. The range of the 429 

average total number of the unique HLA alleles across the eight genes is indicated by the colors of 430 

the circles. The range of the nucleotide diversity is depicted by the size of the circles.  431 

Fig. 4. Adaptive variants. (A) Summary table of genes under natural selection identified by the 432 

XP-EHH (90), iHS (91), and iSAFE (49) analysis. (B) The selection signal in the CPTA1 gene is 433 

related to cold adaptation. Allele frequencies of the rs80356779 (Pro479Leu) missense mutation 434 

in the CPT1A gene in Siberians, East Asians, and Native North Americans are shown as pie charts. 435 
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*Indicates reported literature data (52-55, 92, 93). C, The selection signal in the LPAR1 gene is 436 

related to thermogenesis and cold adaptation. Allele frequency of the 3’ UTR variant rs1043128 437 

in Siberians, Indigenous Beringian populations, and East Asians are shown as pie charts. (D) The 438 

selection signal in the EPAS1 gene is related to hypoxia adaptation in highlanders of South 439 

America. Allele frequencies of the rs570553380 (Pro479Leu) missense mutation in the EPAS1 440 

gene in Native South Americans are shown as pie charts. *Indicates reported literature data (62). 441 

Quechua groups: Al – Alota, COP/CAN – Copacabana/Candelaria, SJ – San Juan. 442 

Fig. 5. Genetic load of medically relevant variants in GA100K:NENA.  Distribution of the total 443 

number of genetic variants associated with pathogenic traits (A) and adverse medical drug 444 

reactions (B) per individual in 47 selected population groups across seven geographical regions, 445 

as reported in ClinVar v. 20190305 and DrugBank databases. Two bar plots for each population 446 

group indicate heterozygous (lighter color in left) and homozygous (solid color in right) forms. 447 

(C) The total number of pathogenic variants (n=529, ClinVar v.20190305) and variants associated 448 

with the adverse medical drug reactions (n=77, DrugBank) in heterozygous and homozygous 449 

forms per individual is presented in violin plots.  450 
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RESEARCH ARTICLE SUMMARY 60 

 61 

INTRODUCTION 62 

During the late Pleistocene, humans expanded across Eurasia and eventually migrated to the 63 

Americas. Those who reached Patagonia, at the southern tip of South America, completed the 64 

longest migration out of Africa. 65 

RATIONALE 66 

The extent of basal divergences, admixture, and degrees of isolation among Indigenous North 67 

Eurasian and Native South American populations remain debated, with most insights derived from 68 

genome-wide genotyping data. This study aims to deepen our understanding of the ancient 69 

dynamics that shaped contemporary populations in North Eurasia and the Americas. Using large-70 

scale whole-genome sequencing of 1,537 individuals from 139 ethnic groups in these regions, we 71 

examine population structures, elucidate prehistoric migrations, and explore the influence of past 72 

environmental factors on the diversification of human populations. 73 

RESULTS 74 

Advances in large-scale genomic sequencing have significantly enhanced our understanding of the 75 

genetic ancestry of human populations across North Eurasia and South America. Our analysis 76 

reveals that all contemporary Siberians, as well as some Northeast Europeans and Central Asians, 77 

share ancestry with the West Siberian groups, represented by the Kets and Nenets. Their ancestors 78 

were widespread across Siberia 10,000 years ago, but now these groups face population decline 79 

by 73.6%, and are becoming a minority. 80 

The populations of west Beringia, including the Koryaks, Inuit, and Luoravetlans, are the most 81 

genetically distinct from other Siberians. These groups have adapted to Arctic conditions with 82 

genetic variations related to lipid metabolism, thermogenesis, sensory perception, and the 83 

regulation of reproductive and immune functions. 84 

We were not able to identify a specific Siberian group as the direct ancestors of Native Americans 85 

due to deep divergence and limited genetic continuity. However, west Beringian populations 86 

remain closely related to Native Americans. Koryaks and Inuit show 5% and 28% Native 87 

American ancestry, respectively, due to gene flow between 700 and 5,100 years ago. 88 

We estimated the split time of Native South Americas into Amazonians, Andeans, Chaco 89 

Amerindians, and Patagonians to have occurred 13,900-10,000 years ago. Migration and 90 

settlement across the continent led to population isolations due to geographic boundaries and a 91 

reduction in their genetic diversity, particularly affecting immune genes like the human leukocyte 92 

antigen (HLA). Over the past 10,000 years, all four Native South American lineages have 93 

experienced population declines ranging from 38% to 80%. This dramatic decline, combined with 94 

the loss of traditional lifestyles, cultural practices, and languages, has pushed some Indigenous 95 

communities, such as the Kawésqar, to the brink of extinction. 96 

CONCLUSION 97 
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The migration to an uninhabited continent of South America through the narrow Isthmus of 98 

Panama resulted in a founder effect among Native South Americans, leading to reduced genetic 99 

diversity compared to Indigenous populations of North Eurasia. Over 13,900 years, geographic 100 

barriers within the continent further isolated Indigenous groups, further reducing genetic diversity. 101 

These groups faced a profound challenge with the arrival of European colonists in the 1600s, who 102 

introduced new adversities that threatened their long-standing endurance. 103 

 104 

Summary Figure. Genetic ancestry and nucleotide diversity. Colors represent genetic 105 

ancestries estimated by whole genome sequencing data of contemporary human populations. 106 

Countries having no data remained empty. The size of pies indicates the average nucleotide 107 

diversity of each population. 108 
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